

Find adjacency matrix

2 e1 e2 e3 e4 Find incidence matrix

Find incidence matrix

	(0	1	0	1)	
If the adjacency matrix is	1	0	0	1	Find the undirected graph
	0	0	0	1	
	1	1	1	0	

Find incidence matrix

Find adjacency matrix

Find adjacency matrix

Find incidence matrix

If the adjacency matrix is

 1
 1
 1
 1

 1
 0
 0
 0

 0
 1
 0
 1

 0
 1
 1
 0

Find the undirected graph

Construct the linear equations to get the constants of curve $y = a \cos x + b \ln x + c/x$ to fit given data

Construct the linear equations to get the constants of curve $y = a \sin x + b e^{x} + cx^{2}$ to fit given data

Derive the general formula to compute u(x,t) at each point of the mesh expressed by $u_{xx} + p u_t = a$

Construct the linear equations to get the constants of curve y = 1[/ax+b] to fit given data

Construct the linear equations to get the constants of curve $y = a e^{bx}$

Derive the general formula to compute u(x,t) at each point of the mesh expressed by $u_{xx} + p u_{tt} = b$

Construct the linear equations to get the constants of curve $y = a \sin x + b \ln x + cx$ to fit given data