

Find adjacency matrix

Find adjacency matrix

Find incidence matrix

Find adjacency matrix

If the incidence matrix is

find the directed graph

If the adjacency matrix is $\quad\left(\begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & & 1 & 0 & 0\end{array}\right) \quad$ find the undirected graph

Find incidence matrix

Find incidence matrix

Find incidence matrix

Find adjacency matrix

Find adjacency matrix

If the adjacency matrix is If the adjacency matrix is
$\left(\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right)$

Find the undirected graph

Find the undirected graph

Find the undirected graph
If the adjacency matrix is $\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right) \quad$ Find the undirected graph

Find incidence matrix

Find adjacency matrix

Find adjacency matrix

Find incidence matrix

If the adjacency matrix is

Construct the linear equations to get the constants of curve $y=a \cos x+b \ln x+c / x$ to fit given data

Construct the linear equations to get the constants of curve $y=a \sin x+b e^{x}+c x^{2}$ to fit given data

Derive the general formula to compute $u(x, t)$ at each point of the mesh expressed by $u_{x x}+p u_{t}=a$

Construct the linear equations to get the constants of curve $y=1[/ a x+b]$ to fit given data

Construct the linear equations to get the constants of curve $y=a e^{b x}$

Derive the general formula to compute $u(x, t)$ at each point of the mesh expressed by $u_{x x}+p u_{t t}=b$

Construct the linear equations to get the constants of curve $y=a \sin x+b \ln x+c x$ to fit given data

